Energy Saving Potentials for Gas Fired Industrial Furnaces

Joachim G. Wünning

WS GmbH
Renningen, Germany
Tel. +49 (7159) 1632-0 Fax +49 (7159) 2738
e-mail: j.g.wuenning@FLOX.com

Abstract

Energy efficiency has become a top priority for many companies in the steel and heat treating business. Since hot exhaust gases represent the largest source for losses in most industrial furnaces, preheating the combustion air provides the highest potential for energy savings. Different strategies will be discussed in this paper in respect to their advantages but also regardings things which have to be considered.

A new type of regenerative burner for radiant tube heating will also be presented. Regenerative air preheating is accepted as the most effective way to increase energy efficiency for high temperature process heating but was seen in the past as to complex and expensive for heating small and medium size heat treating furnaces.
Energy Efficiency related to flue gas losses

Efficiency is usually defined as:

\[
\text{efficiency} = \frac{\text{benefit}}{\text{expenditure}}
\]

Regarding firing systems for industrial furnaces, efficiency or available heat is defined as:

\[
\text{efficiency} = \frac{\text{fuel input} - \text{exhaust gas losses}}{\text{fuel input}} = 1 - \frac{\text{fuel input} - \text{exhaust gas losses}}{\text{fuel input}}
\]

Figure 1 shows the efficiency as a function of exhaust gas, or process temperature. For a system without air preheat, it becomes obvious that the efficiency is vanishing with rising exhaust gas temperature. At a 1000°C process temperature, at least 50% of the fuel input will be lost as hot exhaust gas heat.

![Figure 1: Efficiency](image)

To determine the usefulness of air preheat, the relative air preheat \(\varepsilon \) can be defined as:

\[
\varepsilon = \frac{\hat{Q}_{\text{preheat}} - \hat{Q}_{\text{air}}}{\hat{Q}_{\text{exhaust}} - \hat{Q}_{\text{air}}} \approx \frac{\hat{Q}_{\text{preheat}}}{\hat{Q}_{\text{exhaust}}}
\]
The air preheat temperature is the temperature which is supplied to the burner. Energy losses between a central heat exchanger and the burner have to be considered. The hot exhaust temperature is the temperature of the exhaust gases leaving the furnace. In most cases this temperature is close to the process temperature. In radiant tube heated furnaces this temperature can be substantially higher than the furnace temperature. The air inlet temperature is usually ambient air and therefore the relative air preheat can be expressed as the ratio of preheat temperature to hot exhaust temperature. The relative air preheat is a good figure to characterize a heat exchanger for air preheating.

\[
\vartheta_{\text{preheat}} \quad \text{air preheat temperature} \ [^\circ\text{C}] \\
\vartheta_{\text{exhaust}} \quad \text{hot exhaust temperature} \ [^\circ\text{C}] \\
\vartheta_{\text{air}} \quad \text{air inlet temperature} \ [^\circ\text{C}]
\]

A heat exchanger performance evaluated by the NTU – number of transfer unit. The NTU are proportional to the heat exchanger area and inversely proportional to the heat capacity flow through the heat exchanger.

\[
\text{NTU} = \frac{k \cdot A}{m \cdot c_p}
\]
with: A - heat exchanger surface area
k – heat transfer coefficient
m – mass flow
c_p – specific heat

Figure 2 shows the relative air preheat in a simplified diagram for counterflow and coflow heat exchangers.

The savings can be calculated as:

\[
\text{savings} = 1 - \frac{\text{low efficiency}}{\text{high efficiency}}
\]

That translates to savings of 20% if a system with 68% efficiency is upgraded to 85% efficiency.

Continuous direct fired furnaces

![Continuous direct fired furnace](image)

Figure 3: Direct fired continuous furnace

One option, shown in Figure 3, to lower the exhaust gas losses is to add an unheated section to the furnace where the incoming products are preheated. This is quite effective as long as the flue gas is hot but to really transfer considerable amounts of heat, very long preheat zones would be necessary. This method to improve efficiency is common in the ceramic industry in tunnel furnaces.
Additional usefull cooling of exhaust gases can be done in a central heat exchanger (Figure 4). The limitation here is coming from the design and size of the recuperator as well as the maximum temperature for the hot air control valves. Common air preheat temperatures are 300° to 500° and in some cases as high as 600°C.

The limitations for air preheating could be overcome with self recuperative burners (Figure 6) or regenerative burner systems for decentralized heat recovery (Figure 5). Here every burner has its own heat exchanger which is placed in the furnace wall or close to the burner. The combustion air control valves are located on the cold side of the heat exchangers. Besides higher efficiency, such a system provides a more exact furnace temperature control because
there is no interaction between the furnace zones. The lack of the costly insulated hot air piping and a preheat zone usually offsets the higher burner costs and the expenditure for the exhaust collection system. Energy savings of 10 to 30% compared to systems with central recuperators can be achieved.

Figure 6: Self recuperative burner REKUMAT® (WS GmbH)

Even higher airpreheat temperatures and therefore higher efficiency can be achieved with regenerative burners. For larger burner capacities, regenerative burner pairs are common. As shown in Figure 7, two burners are linked and are firing alternately. Exhaust and combustion air are directed over the regenerators which are made of ceramic balls or honeycombs. Relative air preheat of 0.8 to 0.9 are achievable, making these systems very effective. Figure 8 shows one of the regenerative burners. The burner uses air staging as NOx-reducing measure.

Figure 7: Regenerative burner pair

Figure 8: Regenerative burner (Bloom)

For smaller capacities, a self regenerative burner allows the same high efficiency, but with the advantage of a single burner solution. There is no need to switch from one burner to another.
and the one burner can fire continuously, just like a recuperative burner. This is possible by integrating all switching valves and regenerators into one compact unit, as shown in Figure 9 and Figure 10.

Fuel saving compared to self recuperators are in the range of 10 to 20% and savings of 50% and more compared to cold air systems were achieved.

Radiant tube fired systems

For radiant tubes, decentralized heat recovery is preferable. Central heat exchangers, which are common for large direct fired furnaces are not practical for radiant tube fired systems because there is no central exhaust outlet of the furnace. The hot exhaust gases would have to be transported to the heat exchanger in costly insulated ducts and then the hot air has to be distributed back to the individual radiant tubes. For radiant tube heating, a good heat recovery system is essential since the exhaust temperatures are often substantially higher than the furnace temperature. That is particularly true for ceramic radiant tubes with high heat release rates.

The different radiant tube designs (see Figure 11) require different strategies for heat recovery.
In straight through tubes, heat recovery is very rare. For U- or W-tubes, the most common way to preheat the combustion air is to use plug-in recuperators (Figure 12). To enhance the air preheat, external recuperators are also possible. The limitation for air preheat is coming from the necessity to guide the hot air from the exhaust leg to the burner and also from the coflow heat exchanger design.

Figure 12: W-tube with plug in recuperator

Higher air preheat temperatures and thereby higher efficiency can be achieved with regenerative burner systems in U-, W- and A-tubes. Two burners per tube are firing alternating (see Figure 13). The regenerative systems allow air preheat temperatures close to the furnace temperature. Energy savings of more than 20% compared to systems with plug in recuperators are typical. Besides energy savings, the temperature uniformity of the tubes are much better due to the alternating flow direction in the tube. Attention has to be paid to NO\textsubscript{x} formation due to the high air preheat and also the complexity of the system due to two burners per tube.
Figure 13: regenerative fired W-tube

Single ended, P- and Double-P tubes are usually fired with self recuperative burners. The counterflow heat exchanger, which is placed inside the furnace wall, allows high air preheat temperatures and there is no hot air piping required outside the furnace. For high temperatures, self recuperative burners with ceramic heat exchangers (see Figure 6) are available. Air preheat temperatures in the range of 500 to 700°C are typical. Figure 14 shows a double-P tube with a self recuperative burner. High velocity combustion results in a good temperature uniformity and internal recirculation allows the application of flameless oxidation, FLOX® (registered trademark of WS GmbH) as an effective method to reduce thermal NOx formation. Self recuperative burners are widely used since they combine good performance with a high efficiency.

Figure 14: Double-P-tube with self recuperative burner
To combine the advantages of regenerative systems and self recuperative burners, a self regenerative burner for radiant tubes was developed.

Figure 17 shows a self regenerative burner which could be used for direct firing and for heating of recirculating radiant tubes. The self regenerative burner is used in combination with a pulse firing system, that means, the burner is on/off controlled. All the logic for regenerative switching, flame safety, ignition and valve operation is handled by a local burner.
control unit. That makes the installation, start up and maintenance as easy as with self recuperative burners. The tube temperature uniformity is excellent because of the internal recirculation and NOx emissions are low due to flameless oxidation.

To keep the number of radiant tubes and burners, and thereby the costs, at a minimum, radiant tubes with a large tube diameter should be used. With double-P tubes, it is possible to heat a furnace with fraction of burners compared to a system with small diameter straight tubes.

Conclusions

There are many options for increasing the energy efficiency. Preheating the combustion air is the most effective way to increase efficiency in most furnaces. To fight the challenges of rising energy cost and environmental regulations, a close cooperation of the end user, the furnace builder and the burner manufacturer is necessary to choose the best possible configuration with respect to:
- performance
- energy efficiency
- low emissions
- low maintenance

and of course not higher than needed investment costs.